Courses

50-week Foundations of Modern Machine Learning

The course is designed exclusively for the benefit of second year undergraduate engineering students (in third or fourth semesters). Course starts from August 2022.

Introduction

Applications of machine learning have grown beyond expections and have started showing up in various domains. In many of the successful cases, the applications have been guiding professionals to make well-informed decisions. Technology innovation hub of IIIT Hyderabad (iHub-Data) having strong research programs in machine learning, image processing, computer vision, robotics, natural language processing, pattern recognition and speech processing, is pleased to announce a 50-week foundation program in machine learning for undergraduate engineering students who are in their second year of study (either in third semester or fourth semester) across India, slated to commence from August 2022 onwards.

Who can participate?

  • Students pursuing 4-year UG program in engineering/technology
  • Students should be in their third/fourth semesters (second year of engineering).
  • Students should be studying in an AICTE recognised institution or a technical institution of repute in India.
  • Students should be able to spare at least three hours every week for learning the course.

What makes this program unique?

  • 50-week certificate program in Foundations of Modern Machine Learning
  • Equivalent to a typical 4 credit course as per UGC/AICTE norms
  • Live online lectures and hands-on sessions with personalised learning experience
  • Includes over 40 independent projects, quizzes and assignments.
  • Equal focus on foundation and practices
  • Discussions with eminent professionals

What is the qualifying criteria?

  • Strong interest to learn fundamentals of Machine Learning and Deep Learning
  • Keen programming interest in Python in Colab environment
  • Want to learn applications of Linear Algebra, Probability and Statistics

Frequently Asked Questions (FAQs)

How is this course different from other courses?
This program uniquely combines the benefits of an in-class program with the flexibility of online learning. Recorded classes give the participants the flexibility of learning at their pace. Live interactions with the faculty and mentors help them to clarify their doubts and queries.

Will I receive a certificate at the end of the course?
Yes, a certificate of achievement from IIIT-H will be awarded upon successful completion of the course.

How will my doubts/queries be resolved in the online class?
Live sessions with the IIIT-H faculty will enable the participants to clear their doubts. Additionally, mentors will be available to clear doubts during the one to one mentoring sessions. Mentors and Project Associates are there to help the participant with better solutions and workarounds.

Will I get a refund if I wish to discontinue?
Participants are encouraged to be dedicated towards completing the program, by earmarking at least three hours per week for the course. No refund will be given in the event of discontinuation.

Who will be teaching the course?
Recorded and live sessions will be provided by the IIIT-H faculty in conjunction with mentors with considerable AI/ML expertise. Industry experts will also contribute to the learning outcomes through occasional sessions. Members of faculty would include Prof CV Jawahar, Prof Anoop M Namboodiri, Dr Ravi Kiran S among others.

What is the expected weekly time commitment?
Participants are expected to commit 3 hours a week to fully benefit from the program. This will include the online sessions and time devoted for learning and assignments as well.

How will I be evaluated during the course?
A holistic approach would be followed where participants would be evaluated continuously. Quizzes, assignments, discussions and attendance would be used for evaluation of performance.

How will I get access to online labs?
All participants would get access to the online labs right from the start of the program.

Does the course have a deferral policy?
No

When will the live classes be conducted?
The live interactive sessions will usually be conducted on weekends or outside working hours of day.

What if I miss a live class?
It is advisable not to miss the live sessions with the faculty. However, in the event of missing a class,  recording of the session would be made available for a limited period.

What are the system/internet requirements needed to attend the course?
A laptop/desktop and a stable internet connection is essential to attend the course.

Will I be able to access the learning contents even after completing the course?
The laboratory contents would be built independently by all participants, as part of attending the course. Recorded sessions of classes are set to expire automatically after a fixed duration.

Does IIIT Hyderabad offer a course on Modern Machine Language on-campus ?
No, there is no equivalent on-campus program. IIIT Hyderabad has curated this course, exclusively as an online program.

What is the language of instruction for these courses? Are they available in other regional languages?
All our program courses are taught in English. Hence, a minimum proficiency in English language is expected to participate in the program.

Are there any communication groups on WhatsApp, Telegram etc for the online program on Modern Machine Learning?
Individual email addresses from IIIT domain would be extended to all participants. Discord would be another source of communicating.

What should be done if there is an error with registration?
Please send us your registered email-id,  application number and a screenshot of the error/issue with relevant description to fmml.coordinator@ihub-data.iiit.ac.in

Is there an attendance policy for this program?
Yes. Participants are expected to have minimum 75% attendance.

Can we have any hands-on training part (practical lab sessions) ?
All laboratory sessions would be on cloud-based platforms, which would be carried out in week days at a convenient time of participants.

Who will be issuing the certificate ?
IIIT Hyderabad will be issuing the certificate of completion of the course.

Are there any projects to work after the course ?
Those who complete the course with a good rating might be considered for (a) summer internships (with stipend) (b) lateral entry admission or (c) working on research projects at IIIT Hyderabad.

Any internship/placement support ?
Participants who perform reasonably well would be extended opportunity to participate in long-term internship programs (with stipend) organised at IIIT Hyderabad

What is the course fee?

The course fee is Rs.2500 (incl of all taxes). Rs 500 should be paid for aptitude examination (before 15 June) and remaining fee of Rs 2000 should be paid before 10 July 2022. Generally students who have scored over 80% marks in 10th and 12th would find the aptitude test very easy.

I am a working-professional. Can I join this course ?

This course is exclusively meant for undergraduate engineering students. For working professionals, the appropriate course is https://iiit-h.talentsprint.com/aiml/index.html

I am a teacher in a technical institute. Can I join this course ?

This course is exclusively meant for undergraduate engineering students. For members of faculty, the appropriate course is https://csedu.iiitd.ac.in/program.html

What is the general opinion about this Course ?

A few UG students who completed the course were contacted for their opinions about the course. Please hear them speaking their mind out.

Course Fees

  • There would be an online aptitude examination – Fee Rs 500/- (non-refundable)

Important Dates to remember

  • Last date of registering for aptitude exam (Rs 500) : 15 June 2022
  • Online aptitude examination : 26 June 2022 (8pm to 9pm) link would be sent via email.
  • Payment of Registration Fee : Closed
  • Preparatory Sessions (from) : 22 July 2022
  • Regular FMML Sessions from : 13 Aug 2022

How to Register

  • The last date for registration was over on 15 June 2022.
  • Names of those who have been admitted are published here. This includes list of provisional admissions too.
  • The aptitude examination would test for reasonable proficiency in english language (+2 level), basic maths (+2 level), and reasoning skills, all of which are deemed essential for this course.

Curriculum

  • Introduction to ML
  • Machine Learning Components: Data, Model, Evaluation
  • Revisiting Nearest Neighbor Classification
  • Retrieval, Performance Evaluation and Metrics
  • Decision Trees
  • Linear Classifier
  • SVM
  • Representing Textual Data,  Aadhar: Sequences matching
  • Perceptrons and gradient descent
  • Loss functions and gradient descent
  • Regression
  • Clustering
  • Feature selection and PCA
  • Multi Layer Perceptron
  • Probabilistic ML models
  • Deep Learning Architectures

Grading Policy

  1. 25% weightage for assignments (github)
  2. 75% weightage for examinations (online)
    ——————————————————
  3. Grades
    Less than 40% – No certificate
    40 – 59% – Completion Certificate
    60 – 74% – B Grade
    75 – 89% – A Grade
    90% above – Outstanding

For any clarification,

Email: fmml.coordinator@ihub-data.iiit.ac.in

Ph: +91 40 6653 1789 (Mon-Fri 0930h to 1730h)

Progress (Timeline)

FMML ID Module 2 Module 1
FMML20220001 A 46
FMML20220002 27 42
FMML20220003 46 37
FMML20220004 42 42
FMML20220005 40 46
FMML20220006 48 42
FMML20220007 40 34
FMML20220008 A A
FMML20220009 40 40
FMML20220010 37 43
FMML20220011 45 47
FMML20220012 41 36
FMML20220013 44 41
FMML20220014 A A
FMML20220015 25 29
FMML20220016 38 34
FMML20220017 39 39
FMML20220018 44 39
FMML20220019 A A
FMML20220020 A 38
FMML20220021 A 41
FMML20220022 41 29
FMML20220023 32 20
FMML20220024 A 41
FMML20220025 A 35
FMML20220026 A A
FMML20220027 A 25
FMML20220028 43 32
FMML20220029 A A
FMML20220030 37 30
FMML20220031 43 37
FMML20220032 A 40
FMML20220033 38 40
FMML20220034 37 41
FMML20220035 33 25
FMML20220036 44 42
FMML20220037 27 A
FMML20220038 33 37
FMML20220039 46 41
FMML20220040 43 41
FMML20220041 17 A
FMML20220042 43 40
FMML20220043 40 A
FMML20220044 A A
FMML20220045 46 36
FMML20220046 44 45
FMML20220047 A A
FMML20220048 29 A
FMML20220049 42 37
FMML20220050 A A
FMML20220051 A 37
FMML20220052 A 31
FMML20220053 32 36
FMML20220054 A A
FMML20220055 A A
FMML20220056 45 38
FMML20220057 A 35
FMML20220058 42 37
FMML20220059 34 34
FMML20220060 44 41
FMML20220061 33 38
FMML20220062 33 40
FMML20220063 44 41
FMML20220064 44 39
FMML20220065 46 38
FMML20220066 41 43
FMML20220067 A A
FMML20220068 42 39
FMML20220069 46 44
FMML20220070 A A
FMML20220071 A 39
FMML20220072 35 38
FMML20220073 42 A
FMML20220074 A 44
FMML20220075 A 41
FMML20220076 43 39
FMML20220077 A 22
FMML20220078 43 28
FMML20220079 44 A
FMML20220080 47 40
FMML20220081 40 A
FMML20220082 A 28
FMML20220083 A A
FMML20220084 A 24
FMML20220085 47 40
FMML20220086 A 36
FMML20220087 A A
FMML20220088 A 22
FMML20220089 A 40
FMML20220090 41 33
FMML20220091 46 42
FMML20220092 45 38
FMML20220093 44 37
FMML20220094 36 39
FMML20220095 39 37
FMML20220096 34 36
FMML20220097 39 34
FMML20220098 38 35
FMML20220099 A A
FMML20220100 A A
FMML20220101 19 32
FMML20220102 43 43
FMML20220103 46 43
FMML20220104 44 41
FMML20220105 42 39
FMML20220106 A 37
FMML20220107 38 35
FMML20220108 A A
FMML20220109 40 38
FMML20220110 47 41
FMML20220111 39 40
FMML20220112 A A
FMML20220113 45 38
FMML20220114 A 41
FMML20220115 A 41
FMML20220116 39 30
FMML20220117 A A
FMML20220118 37 36
FMML20220119 48 42
FMML20220120 A A
FMML20220121 A A
FMML20220122 A 27
FMML20220123 A A
FMML20220200 25 27
FMML20220201 25 18
FMML20220202 27 27
FMML20220203 34 28
FMML20220204 28 32
FMML20220205 35 23
FMML20220206 26 29
FMML20220207 28 16
FMML20220208 36 31
FMML20220209 36 35
FMML20220210 30 25
FMML20220211 A A
FMML20220212 31 1
FMML20220213 32 20
FMML20220214 38 33
FMML20220215 32 18
FMML20220216 29 A
FMML20220217 29 37
FMML20220218 32 22
FMML20220219 30 21
FMML20220220 26 27
FMML20220221 27 22
FMML20220222 32 19
FMML20220223 33 29
FMML20220224 A 10
FMML20220225 26 23
FMML20220226 41 28
FMML20220227 A A
FMML20220228 30 28
FMML20220229 27 A
FMML20220230 24 27
FMML20220231 23 27
FMML20220232 21 21
FMML20220233 28 34
FMML20220234 A 14
FMML20220235 28 24
FMML20220236 37 30
FMML20220237 28 30
FMML20220238 26 30
FMML20220239 29 26
FMML20220240 22 22
FMML20220241 27 25
FMML20220242 31 33
FMML20220243 41 30
FMML20220244 32 33
FMML20220245 30 20
FMML20220246 A A
FMML20220247 17 24
FMML20220248 27 22
FMML20220249 17 A
FMML20220250 30 22
FMML20220251 A 27
FMML20220252 27 30
FMML20220253 25 24
FMML20220254 30 32
FMML20220255 27 27
FMML20220256 A 24
FMML20220257 A 21
FMML20220258 A A
FMML20220259 A 20
FMML20220260 A 24
FMML20220261 A 16
FMML20220262 A 24
FMML20220263 34 31
FMML20220264 26 33
FMML20220265 23 24
FMML20220266 37 A
FMML20220267 21 20
FMML20220268 35 33
FMML20220269 31 28
FMML20220270 28 31
FMML20220271 9 14
FMML20220272 35 28
FMML20220273 27 24
FMML20220274 29 26
FMML20220275 24 A
FMML20220276 26 21
FMML20220277 A A
FMML20220278 35 29
FMML20220279 39 29
FMML20220280 31 24
FMML20220281 37 29
FMML20220282 24 23
FMML20220283 27 25
FMML20220284 26 23
FMML20220285 A 21
FMML20220286 31 24
FMML20220287 35 22
FMML20220288 35 30
FMML20220289 34 26
FMML20220290 A 24
FMML20220291 36 20
FMML20220292 34 27
FMML20220293 43 34
FMML20220294 32 25
FMML20220295 22 A
FMML20220296 33 30
FMML20220297 30 32
FMML20220298 11 9
FMML20220299 35 35
FMML20220300 28 27
FMML20220301 30 27
FMML20220302 30 9
FMML20220303 12 23
FMML20220304 25 25
FMML20220305 35 29
FMML20220306 21 14
FMML20220307 9 25
FMML20220308 A 26
FMML20220309 34 20
FMML20220310 A 29
FMML20220311 24 33
FMML20220312 28 15
FMML20220313 19 29
FMML20220314 27 21
FMML20220315 34 24
FMML20220316 20 29
FMML20220317 32 18
FMML20220318 33 23
FMML20220319 32 19
FMML20220320 27 32
FMML20220321 A A
FMML20220322 23 30
FMML20220323 34 25
FMML20220324 25 29
FMML20220325 A 29
FMML20220326 27 12
FMML20220327 23 29
FMML20220328 29 A
FMML20220329 25 22
FMML20220330 A 20
FMML20220331 9 22
FMML20220332 42 A
FMML20220333 46 30
FMML20220334 30 36
FMML20220335 31 23
FMML20220336 22 29
FMML20220337 19 22
FMML20220338 A 22
FMML20220339 26 9
FMML20220340 26 27
FMML20220341 25 26
FMML20220342 32 23
FMML20220343 26 28
FMML20220344 28 26
FMML20220345 35 25
FMML20220346 A 23
FMML20220347 32 28
FMML20220348 23 26
FMML20220349 A A
FMML20220350 33 19
FMML20220351 22 23
FMML20220352 29 23
FMML20220353 26 27
FMML20220354 32 26
FMML20220355 34 27
FMML20220356 20 21
FMML20220357 26 22
FMML20220358 35 28
FMML20220359 28 28
FMML20220360 26 31
FMML20220361 26 26
FMML20220362 36 28
FMML20220363 37 36
FMML20220364 30 A
FMML20220365 32 29
FMML20220366 13 35
FMML20220367 33 5
FMML20220368 36 27
FMML20220369 35 28
FMML20220370 A 24
FMML20220371 37 24
FMML20220372 17 27
FMML20220373 40 A
FMML20220374 36 30
FMML20220375 41 28
FMML20220376 26 29
FMML20220377 34 23
FMML20220378 24 29
FMML20220379 A A
FMML20220380 29 22
FMML20220381 35 27
FMML20220382 35 31
FMML20220383 26 20
FMML20220384 36 26
FMML20220385 A 11
FMML20220386 16 18
FMML20220387 40 17
FMML20220388 9 16
FMML20220389 18 14
FMML20220390 31 30
FMML20220391 29 27
FMML20220392 31 23
FMML20220393 32 30
FMML20220394 33 18
FMML20220395 34 34
FMML20220396 23 25
FMML20220397 35 31
FMML20220398 32 14
FMML20220399 31 32
FMML20220400 31 26
FMML20220401 26 20
FMML20220402 29 A
FMML20220403 33 23
FMML20220404 35 35
FMML20220405 25 A
FMML20220406 A A
FMML20220407 20 21
FMML20220408 25 28
FMML20220409 A A
FMML20220410 39 27
FMML20220411 30 22
FMML20220412 20 13
FMML20220413 A 18
FMML20220414 28 25
FMML20220415 20 19
FMML20220416 15 36
FMML20220417 38 15
FMML20220418 32 A
FMML20220419 27 20
FMML20220420 26 27
FMML20220421 38 26
FMML20220422 31 25
FMML20220423 22 A
FMML20220424 20 28
FMML20220425 31 18
FMML20220426 33 32
FMML20220427 25 26
FMML20220428 31 30
FMML20220429 36 25
FMML20220430 23 15
FMML20220431 24 22
FMML20220432 A A
FMML20220433 A 23
FMML20220434 24 25
FMML20220435 43 27
FMML20220436 23 26
FMML20220437 27 23
FMML20220438 34 19
FMML20220439 14 22
FMML20220440 30 22
FMML20220441 35 30
FMML20220442 26 26
FMML20220443 27 24
FMML20220444 A A
FMML20220445 31 24
FMML20220446 41 37
FMML20220447 30 22
FMML20220448 38 A
FMML20220449 13 A
FMML20220450 28 25
FMML20220451 24 30
FMML20220452 21 18
FMML20220453 15 8
FMML20220454 A A
FMML20220455 34 19
FMML20220456 33 23
FMML20220457 27 28
FMML20220458 24 31
FMML20220459 25 27
FMML20220460 A A
FMML20220461 41 26
FMML20220462 27 24
FMML20220463 A A
FMML20220464 30 26
FMML20220465 26 32
FMML20220466 35 22
FMML20220467 29 29
FMML20220468 30 A
FMML20220469 32 28
FMML20220470 31 15
FMML20220471 34 28
FMML20220472 25 17
FMML20220473 37 28
FMML20220474 28 21
FMML20220475 27 18
FMML20220476 A 22
FMML20220477 35 22
FMML20220478 A A
FMML20220479 A A
FMML20220480 A A
FMML20220481 33 34
FMML20220482 11 A
FMML20220483 13 24
FMML20220484 31 25
FMML20220485 34 26
FMML20220486 37 36
FMML20220487 29 27
FMML20220488 32 31
FMML20220489 21 21
FMML20220490 26 23
FMML20220491 32 27
FMML20220492 34 23
FMML20220493 39 34
FMML20220494 19 15
FMML20220495 36 33
FMML20220496 31 27
FMML20220497 A A
FMML20220498 40 19
FMML20220499 36 24
FMML20220500 32 26
FMML20220501 A 23
FMML20220502 34 32
FMML20220503 34 29
FMML20220504 40 33
FMML20220505 29 25
FMML20220506 A 16
FMML20220507 A 17
FMML20220508 30 32
FMML20220509 37 32
FMML20220510 22 26
FMML20220511 28 25
FMML20220512 17 16
FMML20220513 16 A
FMML20220514 24 24
FMML20220515 21 21
FMML20220516 29 18
FMML20220517 29 27
FMML20220518 32 24
FMML20220519 25 23
FMML20220520 37 A
FMML20220521 41 37
FMML20220522 29 28
FMML20220523 30 26
FMML20220524 25 21
FMML20220525 25 26
FMML20220526 A A
FMML20220527 24 22
FMML20220528 20 22
FMML20220529 A A
FMML20220530 28 24
FMML20220531 24 17
FMML20220532 35 A
FMML20220533 42 31
FMML20220534 34 20
FMML20220535 34 19
FMML20220536 A A
FMML20220537 27 24
FMML20220538 24 20
FMML20220539 16 25
FMML20220540 29 14
FMML20220541 34 31
FMML20220542 15 23
FMML20220543 22 A